Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cardiovasc Hematol Disord Drug Targets ; 20(3): 181-184, 2020.
Article in English | MEDLINE | ID: covidwho-1435708

ABSTRACT

Nowadays Coronavirus Disease 2019 (Covid-19) is increasing mortality all over the world mercilessly. We are learning almost every day about its new symptoms and that it mutates quickly. This disease has tied us up and made us desperate. The death rate from this disease has increased in patients who had pre-existing medical conditions, especially cardiovascular ones, by eliminating the angiotensin-converting enzyme (ACE)-2 receptor in the lungs. Also, ACE1 and angiotensin receptor blockers (ARB) may stimulate ACE2 expression and worse the prognosis. Intravenous infusions of ACEIs and ARBs in experimental animals increase the number of ACE2 receptors. Therefore, it may be one of the reasons that COVID-19 infects the cells of patients treating hypertension. However, most of the congress of cardiology do not recommend to discontinue these anti-hypertensive drugs. Therefore, this brief report evaluates Covid-19 in the view of cardiovascular diseases taking into account current reports and suggests some possible solutions to keep the virus under control.


Subject(s)
Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacokinetics , COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , Age Factors , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Antihypertensive Agents/therapeutic use , COVID-19/complications , COVID-19/mortality , Cardiovascular Diseases/metabolism , Humans , Hypertension/drug therapy , Pandemics , SARS-CoV-2 , Severity of Illness Index , Thromboembolism/etiology , Thromboembolism/physiopathology
2.
Molecules ; 26(7)2021 Mar 29.
Article in English | MEDLINE | ID: covidwho-1159212

ABSTRACT

The COVID-19 pandemic has reached over 100 million worldwide. Due to the multi-targeted nature of the virus, it is clear that drugs providing anti-COVID-19 effects need to be developed at an accelerated rate, and a combinatorial approach may stand to be more successful than a single drug therapy. Among several targets and pathways that are under investigation, the renin-angiotensin system (RAS) and specifically angiotensin-converting enzyme (ACE), and Ca2+-mediated SARS-CoV-2 cellular entry and replication are noteworthy. A combination of ACE inhibitors and calcium channel blockers (CCBs), a critical line of therapy for pulmonary hypertension, has shown therapeutic relevance in COVID-19 when investigated independently. To that end, we conducted in silico modeling using BIOiSIM, an AI-integrated mechanistic modeling platform by utilizing known preclinical in vitro and in vivo datasets to accurately simulate systemic therapy disposition and site-of-action penetration of the CCBs and ACEi compounds to tissues implicated in COVID-19 pathogenesis.


Subject(s)
Antiviral Agents/pharmacokinetics , COVID-19 Drug Treatment , Drug Repositioning/methods , Hypertension, Pulmonary/drug therapy , Angiotensin-Converting Enzyme Inhibitors/pharmacokinetics , Antiviral Agents/blood , Biosimilar Pharmaceuticals , COVID-19/complications , Calcium Channel Blockers/pharmacokinetics , Computer Simulation , Databases, Pharmaceutical , Drug Development/methods , Humans , Hypertension, Pulmonary/virology , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL